Succeeds if the value of objective function ObjF can be constrained to be a local minimum, i.e, it's "slope" is 0 in every dimension, subject to Constraints; otherwise fails. This requires that a partial derivative of ObjF, and any subexpression in Constraints, exists for each variable. local_minima
should be executed prior to a call to clpBNR:global_minimum
using the same objective function, e.g.,
?- [X1,X2]::real, OF=X1**4*exp(-0.01*(X1*X2)**2),
local_minima(OF,{2*X1**2+X2**2==10}), global_minimum(OF,Z), solve([X1,X2]).
OF = X1**4*exp(-0.01*(X1*X2)**2),
X1::real(-1.703183936003284e-108, 1.703183936003284e-108),
X2:: -3.16227766016838...,
Z:: 0.0000000000000000... ;
OF = X1**4*exp(-0.01*(X1*X2)**2),
X1::real(-1.703183936003284e-108, 1.703183936003284e-108),
X2:: 3.16227766016838...,
Z:: 0.0000000000000000... .
- See also
- -
clpBNR:local_minima/1