/usr/share/swi-prolog/pack/clpBNR/prolog/clpBNR_toolkit.pl
All Application Manual Name SummaryHelp

  • clpBNR
    • prolog
      • clpBNR.pl -- clpBNR: Constraint Logic Programming over Continuous Domain of Reals
      • clpBNR_toolkit.pl -- clpBNR_toolkit: Toolkit of various utilities used for solving problems with clpBNR
        • iterate_until/3
        • mid_split_one/1
        • mid_split/1
        • cf_contractor/2
        • cf_solve/1
        • cf_solve/2
        • taylor_contractor/2
        • taylor_merged_contractor/2
        • lin_minimum/3
        • lin_maximum/3
        • lin_minimize/3
        • lin_maximize/3
        • local_minima/1
        • local_maxima/1
        • local_minima/2
        • local_maxima/2
 local_minima(+ObjF, +Constraints:{}) is semidet
Succeeds if the value of objective function ObjF can be constrained to be a local minimum, i.e, it's "slope" is 0 in every dimension, subject to Constraints; otherwise fails. This requires that a partial derivative of ObjF, and any subexpression in Constraints, exists for each variable. local_minima should be executed prior to a call to clpBNR:global_minimum using the same objective function, e.g.,
?- [X1,X2]::real, OF=X1**4*exp(-0.01*(X1*X2)**2),
local_minima(OF,{2*X1**2+X2**2==10}), global_minimum(OF,Z), solve([X1,X2]).
OF = X1**4*exp(-0.01*(X1*X2)**2),
X1::real(-1.703183936003284e-108, 1.703183936003284e-108),
X2:: -3.16227766016838...,
Z:: 0.0000000000000000... ;
OF = X1**4*exp(-0.01*(X1*X2)**2),
X1::real(-1.703183936003284e-108, 1.703183936003284e-108),
X2:: 3.16227766016838...,
Z:: 0.0000000000000000... .
See also
- clpBNR:local_minima/1