Succeeds if the value of objective function ObjF can be constrained to be a local maximum, i.e, it's "slope" is 0 in every dimension; otherwise fails. This requires that a partial derivative of ObjF exists for each variable. local_maxima
should be executed prior to a call to clpBNR:global_maximum
using the same objective function, e.g.,
?- X::real(0,10), OF=X**3-6*X**2+9*X+6, local_maxima(OF), global_maximum(OF,Z).
OF = X**3-6*X**2+9*X+6,
X:: 1.000000000000000...,
Z:: 10.0000000000000... .
- See also
- -
clpBNR:local_maxima/2