/* Part of s(CASP)-Prolog Author: Jan Wielemaker E-mail: jan@swi-prolog.org WWW: https://www.swi-prolog.org Copyright (c) 2021-2023, SWI-Prolog Solutions b.v. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ :- module(scasp_just_html, [ html_justification_tree//2, % :Tree, +Options html_model//2, % :Model, +Options html_model_term//2, % :Atom, +Options html_bindings//2, % :Bindings, +Options html_program/1, % :Dict html_program//1, % :Dict html_query//2, % :Query, +Options html_predicate//2, % :Predicate, +Options html_rule//2, % :Rule, +Options html_term//2 % +Term, +Options ]). :- use_module(common). :- use_module(output). :- use_module(html_text). :- use_module(messages). :- use_module(source_ref). :- use_module(listing). :- use_module(library(http/html_write)). :- use_module(library(http/term_html)). :- use_module(library(http/html_head), [html_resource/2]). :- if(exists_source(library(http/http_server_files))). :- use_module(library(http/http_server_files), []). :- endif. :- use_module(library(dcg/high_order)). :- use_module(library(lists)). :- use_module(library(option)). :- use_module(library(prolog_code)). :- use_module(library(apply)). :- meta_predicate html_model(:, +, ?, ?), html_model_term(:, +, ?, ?), html_justification_tree(:, +, ?, ?), html_program(:), html_program(:, ?, ?), html_query(:, +, ?, ?), html_predicate(:, +, ?, ?), html_rule(:, +, ?, ?). :- multifile user:file_search_path/2. user:file_search_path(js, library(scasp/web/js)). user:file_search_path(css, library(scasp/web/css)). :- html_resource(scasp, [ virtual(true), requires([ jquery, js('scasp.js'), css('scasp.css') ]), ordered(true) ]). /** Render s(CASP) justification as HTML */ %! html_justification_tree(:Tree, +Options)// is det. % % Convert the tree to HTML. The caller should use ovar_analyze_term/1 % on Tree to name variables and identify singletons. This is not done % in this predicate as the user may or may not wish to combine the % variable analysis with the bindings and/or model. Options processed: % % - pred(Boolean) % When `false` (default `true`), ignore user pred/1 rules. % - justify_nmr(Boolean) % When `false` (default `true`), do not omit a justification for % the global constraints. % - show(Format) % One of `human`, `machine` or `both`. % - source(Boolean) % When `false` (default `true`), do not omit source locations. :- det(html_justification_tree//2). html_justification_tree(M:Tree, Options) --> emit(div(class('scasp-justification'), ul(class('scasp-justification'), \justification_tree(Tree, [ depth(0), module(M) | Options ])))). %! justification_tree(+Tree, +Options)// % % Emit HTML for Tree. Tree is of the format as returned by % justification_tree/3, a term of the shape Atom-ListOfChildren. The % first clause deals with mapping subtrees to human descriptions. The % remainder deals with special cases where there are no global % constraints. normal_justification_tree/2 deals with the general % case. justification_tree(Tree, Options) --> { \+ option(show(machine), Options), % human or both option(pred(true), Options, true), option(module(M), Options), human_expression(M:Tree, Children, Actions) }, !, ( {Children == [], Actions == html([])} -> [] ; {Children == []} -> emit(li([ div(class(node), [ \human_atom(Tree, Actions, Options), \connect(Options) ]) ])) ; { incr_indent(Options, Options1), ( Tree == o_nmr_check -> ExtraClasses = ['scasp-global-constraints'] ; ExtraClasses = [] ) }, emit(li( class([collapsable|ExtraClasses]), [ div(class([node, 'collapsable-header']), [ \human_atom(Tree, Actions, Options), \connector(implies, Options) ]), ul(class('collapsable-content'), \justification_tree_children(Children, Options1)) ])) ). justification_tree(query-[Query,o_nmr_check-[]], Options) --> !, justification_tree(Query, Options), full_stop(Options). justification_tree(query-Children, Options) --> !, justification_tree_children(Children, Options), full_stop(Options). justification_tree(o_nmr_check-[], _Options) --> !. justification_tree(Tree, Options) --> normal_justification_tree(Tree, Options). normal_justification_tree(goal_origin(Term, Origin)-[], Options) --> !, { scasp_source_reference_file_line(Origin, File, Line) }, emit(li([ div(class(node), [ \tree_atom(Term, Options), \origin(File, Line, Options), \connect(Options) ]) ])). normal_justification_tree(Term-[], Options) --> !, emit(li([ div(class(node), [ \tree_atom(Term, Options), \connect(Options) ]) ])). normal_justification_tree(o_nmr_check-_, Options) --> { option(justify_nmr(false), Options) }, !. normal_justification_tree(goal_origin(Term, Origin)-Children, Options) --> { incr_indent(Options, Options1), ( Term == o_nmr_check -> ExtraClasses = ['scasp-global-constraints'] ; ExtraClasses = [] ), scasp_source_reference_file_line(Origin, File, Line) }, !, emit(li(class([collapsable|ExtraClasses]), [ div(class([node, 'collapsable-header']), [ \tree_atom(Term, Options), \connector(implies, [origin(File:Line)|Options]), \origin(File, Line, Options) ]), ul(class('collapsable-content'), \justification_tree_children(Children, Options1)) ])). normal_justification_tree(Term-Children, Options) --> { incr_indent(Options, Options1), ( Term == o_nmr_check -> ExtraClasses = ['scasp-global-constraints'] ; ExtraClasses = [] ) }, emit(li(class([collapsable|ExtraClasses]), [ div(class([node, 'collapsable-header']), [ \tree_atom(Term, Options), \connector(implies, Options) ]), ul(class('collapsable-content'), \justification_tree_children(Children, Options1)) ])). justification_tree_children([A,B|Rs], Options) --> !, justification_tree(A, [connect(and)|Options]), justification_tree_children([B|Rs], Options). justification_tree_children([A], Options) --> justification_tree(A, Options). connect(Options) --> { option(connect(Connector), Options) }, !, connector(Connector, Options). connect(_) --> []. %! human_atom(+Tree, +Human, +Options)// is det. % % Emits an atom handled by a pred/1 rule. Human is a sequence of % actions as produced by human_expression/3. human_atom(_, Actions, Options) --> { option(show(human), Options), empty_actions(Actions) }, !. human_atom(_Atom-_Children, Actions, Options) --> { option(show(human), Options), !, css_classes(Options, Classes) }, emit(span(class(['scasp-atom'|Classes]), \actions(Actions, Options))). human_atom(Atom-_Children, _Actions, Options) --> { option(show(machine), Options), ! }, emit(span(class('scasp-atom'), \machine_atom(Atom, Options))). human_atom(Atom-_Children, Actions, Options) --> { css_classes(Options, Classes), scasp_atom_string(Atom, String) }, emit(span(class('scasp-atom'), [ span([class(human), title(String)], span(class(Classes), \actions(Actions, Options))), span(class(machine), \machine_atom(Atom, Options)) ])). empty_actions(''). empty_actions([]). tree_atom(Atom, Options) --> { option(show(machine), Options) }, !, emit(span(class('scasp-atom'), \machine_atom(Atom, Options))). tree_atom(Atom, Options) --> { option(show(human), Options), ! }, emit(span(class('scasp-atom'), \atom(Atom, Options))). tree_atom(Atom, Options) --> { scasp_atom_string(Atom, String) }, emit(span(class(['scasp-atom']), [ span([class(human), title(String)], \atom(Atom, Options)), span(class(machine), \machine_atom(Atom, Options)) ])). scasp_atom_string(goal_origin(Atom, _Origin), String) => scasp_atom_string(Atom, String). scasp_atom_string(Atom, String) => with_output_to(string(String), print_model_term_v(Atom, [])). print_model_term_v(Atom, Options) :- \+ \+ ( inline_constraints(Atom, Options), print_model_term(Atom, Options) ). %! html_model(:Model, +Options)// is det. % % Emit the model as HTML terms. We export the model as a dict with % nested model terms. html_model(M:Model, Options) --> { ( option(class(Class), Options) -> Classes = [Class] ; Classes = [] ), Options1 = [module(M)|Options] }, emit(ul(class(['scasp-model'|Classes]), \sequence(model_item_r(Options1), Model))). model_item_r(Options, Atom) --> emit(li(class('scasp-atom'), \model_term(Atom, Options))). %! html_model_term(:Atom, +Options)// is det. % % Emit a model term. html_model_term(M:Atom, Options) --> model_term(Atom, [module(M)|Options]). model_term(Atom, Options) --> { option(show(human), Options), ! }, atom(Atom, Options). model_term(Atom, Options) --> { option(show(machine), Options), ! }, machine_atom(Atom, Options). model_term(Atom, Options) --> { scasp_atom_string(Atom, String) }, emit([ span([class(human), title(String)], \atom(Atom, Options)), span(class(machine), \machine_atom(Atom, Options)) ]). %! html_bindings(+Bindings, +Options)// % % Print the variable bindings. html_bindings([], _Options) --> []. html_bindings([H|T], Options) --> ( {T==[]} -> html_binding(H, [last(true)|Options]) ; html_binding(H, Options), html_bindings(T, Options) ). html_binding(Name=Value, Options) --> emit(div(class('scasp-binding'), [ var(Name), ' = ', \html_term(Value, Options), \connect_binding(Options) ])). connect_binding(Options) --> { option(last(true), Options) }, !. connect_binding(_Options) --> emit(','). %! html_program(:Dict) % % html_program(Dict) :- phrase(html_program(Dict), Tokens), print_html(current_output, Tokens). %! html_program(:Dict)// % % Emit the current program in human format using HTML. html_program(M:Dict) --> { Dict1 = Dict.put(module, M) }, html_program_section(query, Dict1), html_program_section(user, Dict1), html_program_section(duals, Dict1), html_program_section(constraints, Dict1), html_program_section(dcc, Dict1). html_program_section(Section, Dict) --> { _{module:M, options:Options} :< Dict, Content = Dict.get(Section), Content \= [], scasp_code_section_title(Section, Default, Title), Opt =.. [Section,true], option(Opt, Options, Default) }, !, html(h2(Title)), ( {Section == query} -> {ovar_set_bindings(Dict.bindings)}, html_query(M:Content, Options) ; sequence(predicate_r(M:Options), Content) ). html_program_section(_, _) --> []. predicate_r(M:Options, Clauses) --> html_predicate(M:Clauses, Options). %! html_query(:Query, +Options)// % % Emit the query. This rule accepts the query both in s(CASP) and % normal Prolog notation. :- det(html_query//2). html_query(M:Query, Options) --> { ( is_list(Query) -> prolog_query(Query, Prolog) ; Prolog = Query ), !, comma_list(Prolog, List0), clean_query(List0, List) }, ( { option(show(human), Options) } -> emit(div(class('scasp-query'), [ div(class('scasp-query-title'), 'I would like to know if'), \query_terms(List, [module(M)|Options]) ])) ; { option(show(machine), Options) } -> emit(div(class('scasp-query'), [ span(class('scasp-query-title'), '?- '), \term(Prolog, [numbervars(true)|Options]) ])) ; emit(div(class('scasp-query'), [ div(class(human), [ div(class('scasp-query-title'), 'I would like to know if'), \query_terms(List, [module(M)|Options]) ]), div(class(machine), [ '?- ', \term(Prolog, [numbervars(true)|Options]) ]) ])) ). html_query(_, _) --> emit(div(class(comment), '% No query')). prolog_query([not(o_false)], _) => fail. prolog_query(List, Query), is_list(List) => clean_query(List, List1), ( List1 == [] -> Query = true ; comma_list(Query, List1) ). clean_query(Q0, Q) :- delete(Q0, o_nmr_check, Q1), delete(Q1, true, Q). query_terms([], Options) --> query_term(true, Options). query_terms([H1,H2|T], Options) --> !, query_term(H1, [connect(and)|Options]), query_terms([H2|T], Options). query_terms([Last], Options) --> { option(end(End), Options, ?) }, query_term(Last, [connect(End)|Options]). query_term(Term, Options) --> emit(div(class('scasp-query-literal'), [ \atom(Term, Options), \connect(Options) ])). %! html_predicate(:Rules, Options)// html_predicate(M:Clauses, Options) --> emit(div(class('scasp-predicate'), \sequence(html_rule_r(M, Options), Clauses))). html_rule_r(M, Options, Clause) --> html_rule(M:Clause, Options). %! html_rule(:Rule, +Options)// html_rule(Rule, Options) --> { ovar_analyze_term(Rule) }, html_rule_(Rule, Options), { ovar_clean(Rule) }. html_rule_(M:(Head0 :- Body), Options) --> !, { MOptions = [module(M)|Options], raise_negation(Head0, Head) }, emit(div(class('scasp-rule'), [ div(class('scasp-head'), [ \atom(Head, MOptions), ', if' ]), div(class('scasp-body'), \html_body(Body, [end(.)|MOptions])) ])). html_rule_(M:Head, Options) --> emit(div(class('scasp-rule'), div(class('scasp-head'), [ \atom(Head, [module(M)|Options]), \connector('.', Options) ]))). html_body(forall(X, not(Goal)), Options) --> !, emit(div(class('scasp-query-literal'), [ 'there exist no ', \html_term(X, Options), ' for which ', \atom(Goal, Options) ])). html_body(Body, Options) --> { comma_list(Body, List0), maplist(raise_negation, List0, List) }, query_terms(List, Options). %! atom(+SCASPAtom, +Options)// % % Emit an s(CASP) atom with annotations as they appear in the model % and justification. atom(Atom, Options) --> { option(pred(true), Options, true), option(module(DefM), Options), option(source_module(M), Options, DefM), human_expression(M:(Atom-[]), [], Actions), !, css_classes(Options, Classes) }, emit(span(class(Classes), \actions(Actions, Options))). atom(not(GlobalConstraint), Options) --> { is_global_constraint(GlobalConstraint, N) }, !, utter(global_constraint(N), Options). atom(not(Term), Options) --> !, utter(not(Term), [class(not)|Options]). atom(-Term, Options) --> !, utter(-(Term), [class(neg)|Options]). atom(proved(Term), Options) --> !, utter(proved(Term), [class(proved)|Options]). atom(assume(Term), Options) --> !, utter(assume(Term), [class(assume)|Options]). atom(chs(Term), Options) --> !, utter(chs(Term), [class(chs)|Options]). atom(abduced(Term), Options) --> !, utter(abduced(Term), [class(abducible)|Options]). atom(M:Term, Options) --> { atom(M) }, !, atom(Term, [module(M)|Options]). atom(o_nmr_check, Options) --> !, utter(global_constraints_hold, Options). atom(is(Value,Expr), Options) --> !, { css_classes(Options, Classes) }, emit(span(class([arithmetic|Classes]), [ \expr(Expr, Options), &(nbsp), is, &(nbsp), \html_term(Value, Options) ])). atom(Comp, Options) --> { human_connector(Comp, Text), !, Comp =.. [_,Left,Right], css_classes(Options, Classes) }, emit(span(class([arithmetic|Classes]), [ \html_term(Left, Options), &(nbsp), Text, &(nbsp), \html_term(Right, Options) ])). atom(Term, Options) --> utter(holds(Term), Options). %! expr(+Term, +Options)// is det. % % Render an expression. % % @tbd Should deal with parenthesis where needed. Possibly it is a % better option to use term//2 from library(http/html_term) and add a % portray hook for that? expr(Term, Options) --> { compound(Term), compound_name_arguments(Term, Op, [Left, Right]) }, !, emit(span([ \expr(Left, Options), &(nbsp), Op, &(nbsp), \expr(Right, Options) ])). expr(Term, Options) --> { compound(Term), compound_name_arguments(Term, Op, [Arg]) }, !, emit(span([ Op, \expr(Arg, Options) ])). expr(Simple, Options) --> html_term(Simple, Options). %! utter(+Expression, +Options) utter(global_constraints_hold, _Options) --> { human_connector(global_constraints_hold, Text) }, emit(Text). utter(global_constraint(N), _Options) --> { human_connector(global_constraint(N), Text) }, emit(Text). utter(not(-(Atom)), Options) --> !, { human_connector(may, Text) }, emit([Text, ' ']), atom(Atom, Options). utter(not(Atom), Options) --> { human_connector(not, Text) }, emit([Text, ' ']), atom(Atom, Options). utter(-(Atom), Options) --> { human_connector(-, Text) }, emit([Text, ' ']), atom(Atom, Options). utter(proved(Atom), Options) --> { human_connector(proved, Text) }, atom(Atom, Options), emit([', ', Text]). utter(chs(Atom), Options) --> { human_connector(chs, Text) }, emit([Text, ' ']), atom(Atom, Options). utter(abduced(Atom), Options) --> { human_connector(abducible, Text) }, emit([Text, ' ']), atom(Atom, Options). utter(according_to(File, Line), _Options) --> { human_connector(according_to, Text) }, emit(span(class('scasp-source-reference'), span(class(human), [' [', Text, ' ~w:~w]'-[File, Line]]))). utter(assume(Atom), Options) --> { human_connector(assume, Text) }, emit([Text, ' ']), atom(Atom, Options). utter(holds(Atom), Options) --> { css_classes(Options, Classes) }, ( { atom(Atom) } -> { human_connector(holds, Text) }, emit([span(class(Classes), Atom), Text]) ; { Atom =.. [Name|Args] } -> { human_connector(holds_for, Text) }, emit([span(class(Classes), Name), Text]), list(Args, Options) ). css_classes(Options, [atom|Classes]) :- findall(Class, member(class(Class), Options), Classes0), ( Classes0 == [] -> Classes = [pos] ; Classes = Classes0 ). :- det(html_term//2). html_term(Var, Options) --> { var(Var) }, !, var(Var, Options). html_term(@(Var:''), Options) --> { var(Var) }, !, var(Var, Options). html_term(@(Var:Type), Options) --> { var(Var) }, !, typed_var(Var, Type, Options). html_term(@(Value:''), Options) --> !, html_term(Value, Options). html_term(@(Value:Type), Options) --> emit('the ~w '-[Type]), !, html_term(Value, Options). html_term(Term, _Options) --> { var_number(Term, _) }, !, emit('~p'-[Term]). html_term('| '(Var, {Constraints}), Options) --> !, inlined_var(Var, Constraints, Options). html_term(Term, _Options) --> { emitting_as(plain) }, !, [ ansi(code, '~p', [Term]) ]. html_term(Term, Options) --> term(Term, [numbervars(true)|Options]). %! var(+Var, +Options)// % % Handle a variable, optionally with constraints and annotated using % ovar_analyze_term/2. var(Var, Options) --> { copy_term(Var, Copy), inline_constraints(Copy, Options), nonvar(Copy), Copy = '| '(V, {Constraints}) }, !, inlined_var(V, Constraints, Options). var(Var, _Options) --> { ovar_var_name(Var, Name) }, !, emit(var(Name)). var(_, _) --> emit(anything). %! inlined_var(+Var, +Constraint, +Options)// % % Deal with constraints as represented after inline_constraints/2. inlined_var(Var, Constraints, Options) --> { Constraints = '\u2209'(Var, List), Var == '$VAR'('_') }, !, ( {List = [One]} -> emit('anything except for '), html_term(One, Options) ; emit('anything except for '), list(List, [last_connector(or)|Options]) ). inlined_var(Var, Constraints, Options) --> { Constraints = '\u2209'(Var, List), compound(Var), Var = '$VAR'(Name) }, !, ( {List = [One]} -> {human_connector(neq, Text)}, emit([var(Name), ' ', Text, ' ']), html_term(One, Options) ; {human_connector(not_in, Text)}, emit([var(Name), ' ', Text, ' ']), list(List, [last_connector(or)|Options]) ). inlined_var(Var, Constraints, Options) --> { comma_list(Constraints, CLPQ) }, clpq(Var, CLPQ, Options). %! clpq(@Var, +Constraints, +Options)// clpq(Var, [Constraint|More], Options) --> { compound(Constraint), Constraint =.. [_,A,B], Var == A, human_connector(Constraint, Text), ( nonvar(Var), Var = '$VAR'(Name) -> Id = var(Name) ; Id = number ) }, emit(['any ', Id, ' ', Text, ' ']), html_term(B, Options), ( {More == []} -> [] ; emit(' and '), clpq_and(More, Var, Options) ). clpq_and([Constraint|More], Var, Options) --> { compound(Constraint), Constraint =.. [_,A,B], A == Var, human_connector(Constraint, Text) }, emit([Text, ' ']), html_term(B, Options), ( {More == []} -> [] ; emit(' and '), clpq_and(More, Var, Options) ). %! typed_var(@Var, +Type, +Options)// typed_var(Var, Type, Options) --> { copy_term(Var, Copy), inline_constraints(Copy, Options), nonvar(Copy), Copy = '| '(V, {Constraints}) }, !, inlined_typed_var(V, Type, Constraints, Options). typed_var(Var, Type, _Options) --> { ovar_var_name(Var, Name) }, !, emit([var(Name), ', a ', Type]). typed_var(_Var, Type, _Options) --> emit(['a ', Type]). inlined_typed_var(Var, Type, Constraints, Options) --> { Constraints = '\u2209'(Var, List), Var == '$VAR'('_') }, !, ( {List = [One]} -> emit(['any ', Type, ' except for ']), html_term(One, Options) ; emit(['any ', Type, ' except for ']), list(List, [last_connector(or)|Options]) ). inlined_typed_var(Var, Type, Constraints, Options) --> { Constraints = '\u2209'(Var, List), nonvar(Var), Var = '$VAR'(Name) }, !, ( {List = [One]} -> emit([var(Name), ', a ', Type, ' other than ']), html_term(One, Options) ; emit([var(Name), ', a ', Type, ' not ']), list(List, [last_connector(or)|Options]) ). inlined_typed_var(Var, Type, Constraints, Options) --> % TBD: include type in NLP { comma_list(Constraints, CLPQ) }, clpq(Var, CLPQ, [type(Type)|Options]). %! list(+Elements, +Options) is det. % % Emit a collection as "a, b, and c" list([L1,L], Options) --> !, { option(last_connector(Conn), Options, and), human_connector(Conn, Text) }, html_term(L1, Options), emit(', ~w '-[Text]), html_term(L, Options). list([H|T], Options) --> html_term(H, Options), ( {T==[]} -> [] ; emit(', '), list(T, Options) ). actions(html(HTML), _) --> !, emit(HTML). actions([], _) --> []. actions([H|T], Options) --> action(H, Options), actions(T, Options). action(text(S), _) --> !, emit(S). action(Term, Options) --> html_term(Term, Options). %! connector(+Meaning, +Options)// % % Emit a logical connector. connector(Meaning, Options) --> { option(show(human), Options), !, human_connector(Meaning, Text) }, emit_human_connector(Meaning, Text, Options). connector(Meaning, Options) --> { option(show(machine), Options) }, !, emit_machine_connector(Meaning, Options). connector(Meaning, Options) --> { human_connector(Meaning, Text) }, emit([ span(class(human), \emit_human_connector(Meaning, Text, Options)), span(class(machine), \emit_machine_connector(Meaning, Options)) ]). emit_human_connector(and, Text, _) --> emit([', ', Text]). emit_human_connector(not, Text, _) --> emit([Text, ' ']). emit_human_connector(-, Text, _) --> emit([Text, ' ']). emit_human_connector(?, Text, _) --> emit(Text). emit_human_connector(., Text, _) --> emit(Text). emit_human_connector(implies, Text, Options) --> emit([', ', \origin_annotated(Text, Options)]). emit_machine_connector(and, _) --> emit(','). emit_machine_connector(not, _) --> emit('not '). emit_machine_connector(-, _) --> emit('\u00ac '). emit_machine_connector(?, _) --> emit(?). emit_machine_connector(., _) --> emit(.). emit_machine_connector(implies, Options) --> origin_annotated(' \u2190', Options). human_connector(Term, Connector) :- phrase(scasp_justification_message(Term), List), ( List = [Connector] -> true ; Connector = List ). full_stop(Options) --> { option(show(human), Options) }, !. full_stop(_Options) --> emit(span([class(machine), title('QED')], '\u220e')). incr_indent(Options0, [depth(D)|Options2]) :- select_option(depth(D0), Options0, Options1), select_option(connect(_), Options1, Options2, _), D is D0+1. /******************************* * MACHINE HTML * *******************************/ %! machine_atom(+SCASPAtom, +Options)// % % Emit an s(CASP) atom with annotations as they appear in the model % and justification. machine_atom(goal_origin(Term, _Origin), Options) --> !, machine_atom(Term, Options). machine_atom(not(Term), Options) --> !, emit([span(class([connector,not]), not), ' ']), machine_atom(Term, [class(not)|Options]). machine_atom(-Term, Options) --> !, emit([span(class([connector,neg]), '\u00ac'), ' ']), machine_atom(Term, [class(neg)|Options]). machine_atom(proved(Term), Options) --> !, emit([ span(class([connector,proved]), proved), '(', \machine_atom(Term, [class(proved)|Options]), ')' ]). machine_atom(assume(Term), Options) --> !, emit([ span(class([connector,assume]), assume), '(', \machine_atom(Term, [class(assume)|Options]), ')' ]). machine_atom(chs(Term), Options) --> !, emit([ span(class([connector,chs]), chs), '(', \machine_atom(Term, [class(chs)|Options]), ')' ]). machine_atom(M:Term, Options) --> { atom(M) }, !, emit(span(class(module), [M,:])), machine_atom(Term, [module(M)|Options]). machine_atom(Term, Options) --> { css_classes(Options, Classes), merge_options(Options, [numbervars(true)], WOptions) }, emit(span(class(Classes), \term(Term, WOptions))). :- multifile term_html:portray//2. term_html:portray(Term, Options) --> { nonvar(Term), Term = '| '(Var, Constraints) }, term(Var, Options), emit(' | '), term(Constraints, Options). origin(File, Line, Options) --> { option(source(true), Options) }, !, utter(according_to(File, Line), Options). origin(_, _, _) --> []. origin_annotated(Content, Options) --> { option(origin(File:Line), Options) }, !, emit(span([ class(scasp_origin), 'data-file'(File), 'data-line'(Line) ], Content)). origin_annotated(Content, _) --> emit(Content).