View source with raw comments or as raw
    1/*  Part of SWI-Prolog
    2
    3    Author:        Jan Wielemaker
    4    E-mail:        J.Wielemaker@vu.nl
    5    WWW:           http://www.swi-prolog.org
    6    Copyright (c)  2017, VU University Amsterdam
    7    All rights reserved.
    8
    9    Redistribution and use in source and binary forms, with or without
   10    modification, are permitted provided that the following conditions
   11    are met:
   12
   13    1. Redistributions of source code must retain the above copyright
   14       notice, this list of conditions and the following disclaimer.
   15
   16    2. Redistributions in binary form must reproduce the above copyright
   17       notice, this list of conditions and the following disclaimer in
   18       the documentation and/or other materials provided with the
   19       distribution.
   20
   21    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   22    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   23    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
   24    FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
   25    COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
   26    INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
   27    BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   28    LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
   29    CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30    LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
   31    ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   32    POSSIBILITY OF SUCH DAMAGE.
   33*/
   34
   35:- module(r_data,
   36	  [ r_data_frame/3,		% +Rvar, +Columns, :Goal
   37	    r_data_frame_from_rows/2,	% +RVar, +Rows
   38	    r_data_frame_from_dicts/2,	% +DataFrame, +Rows
   39
   40	    r_data_frame_to_dicts/2,	% +Rvar, -Dicts
   41	    r_data_frame_to_rows/3,	% +RVar, +Functor, -Rows
   42
   43	    r_data_frame_colnames/2,	% +RVars, -ColNames
   44	    r_data_frame_rownames/2	% +RVars, -RowNames
   45	  ]).   46:- use_module(r_call).   47:- use_module(library(apply)).   48:- use_module(library(error)).   49:- use_module(library(pairs)).   50:- use_module(library(lists)).   51
   52:- meta_predicate
   53	r_data_frame(+, +, 0).

R data frame handling

This library provides predicates for creating and fetching R data frames. R data frames are typically 2-dimensional arrays where the data is organised in columns. In Prolog, data is typically organised in rows (or records). */

 r_data_frame(+Rvar, +Columns, :Goal) is det
Create an R data.frame from the solutions of Goal. The resulting data frame is bound to the R variable Rvar. For example:
?- r_data_frame(movieyear,
                [movie=Name, year=Year],
                movie(Name, Year)).
Arguments:
Rvar- is the name of the R output variable
Columns- is a list Name=Var
   77r_data_frame(RVar, ColSpec, Goal) :-
   78	must_be(atom, RVar),
   79	maplist(arg(1), ColSpec, Names),
   80	maplist(arg(2), ColSpec, Vars),
   81	Templ =.. [v|Vars],
   82	findall(Templ, Goal, Rows),
   83	r_data_frame_from_rows(RVar, Rows),
   84	colnames(RVar) <- Names.
 r_data_frame_to_dicts(+DataFrame, -Dicts) is det
Translate a DataFrame into a list of dicts, where each dict represents a row. The keys of the dicts are fetched from colnames(DataFrame). For example:
?- r_data_frame_to_dicts(mtcars, Dicts).
Dicts = [ row{am:1, carb:4, cyl:6, disp:160.0, drat:3.9,
              gear:4, hp:110, mpg:21.0, qsec:16.46, vs:0,
              wt:2.62},
          ...
        ]
  101r_data_frame_to_dicts(DataFrame, Dicts) :-
  102	Cols <- DataFrame,
  103	ColNameStrings <- colnames(DataFrame),
  104	maplist(atom_string, ColNames, ColNameStrings),
  105	pairs_keys_values(Pairs, ColNames, _),
  106	dict_pairs(Templ, _, Pairs),
  107	maplist(dict_cols(Templ, Dicts), ColNames, Cols).
  108
  109dict_cols(Templ, Dicts, Name, Col) :-
  110	maplist(fill_col(Templ, Name), Col, Dicts).
  111
  112fill_col(_, Name, Value, Dict) :-
  113	nonvar(Dict), !,
  114	get_dict(Name, Dict, Value).
  115fill_col(Templ, Name, Value, Dict) :-
  116	copy_term(Templ, Dict),
  117	get_dict(Name, Dict, Value).
 r_data_frame_to_rows(+DataFrame, +Functor, -Rows) is det
Translate a 2-dimensional R dataframe into a list of compound terms, each representing a row. The functor of each row is Functor. For example:
?- r_data_frame_to_rows(mtcars, car, Rows).
Rows = [ car(21.0, 6, 160.0, 110, 3.9, 2.62, 16.46, 0, 1, 4, 4),
         ...
       ].
  132r_data_frame_to_rows(DataFrame, Functor, Rows) :-
  133	Cols <- DataFrame,
  134	length(Cols, Arity),
  135	term_cols(Cols, 1, Arity, Functor, Rows).
  136
  137term_cols([], _, _, _, _).
  138term_cols([Col|Cols], I, Arity, Functor, Rows) :-
  139	maplist(term_col(I, Arity, Functor), Col, Rows),
  140	I2 is I+1,
  141	term_cols(Cols, I2, Arity, Functor, Rows).
  142
  143term_col(1, Arity, Functor, Value, Term) :- !,
  144	functor(Term, Functor, Arity),
  145	arg(1, Term, Value).
  146term_col(I, _, _, Value, Term) :-
  147	arg(I, Term, Value).
 r_data_frame_from_dicts(+DataFrame, +Rows) is det
Assign the R variable DataFrame the content of Rows. Rows is a list of dicts that must all have the same set of keys. The keys are used as column names.
See also
- dicts_to_same_keys/3 to align the set of keys for each dict
  157r_data_frame_from_dicts(DataFrame, Rows) :-
  158	must_be(atom, DataFrame),
  159	must_be(list, Rows),
  160	Rows = [Row1|_],
  161	dict_keys(Row1, Keys),
  162	dict_col_data(Keys, Rows, ColData),
  163	compound_name_arguments(Term, 'data.frame', ColData),
  164	DataFrame <- Term,
  165	colnames(DataFrame) <- Keys.
  166
  167dict_col_data([], _, []).
  168dict_col_data([K|Keys], Rows, [ColI|ColR]) :-
  169	maplist(get_dict(K), Rows, ColI),
  170	dict_col_data(Keys, Rows, ColR).
 r_data_frame_from_rows(+DataFrame, +Rows) is det
Assign the R variable DataFrame the content of Rows. Rows is a list of compound terms.
  177r_data_frame_from_rows(DataFrame, Rows) :-
  178	must_be(atom, DataFrame),
  179	must_be(list, Rows),
  180	Rows = [Row1|_],
  181	functor(Row1, _, NCols),
  182	col_data(1, NCols, Rows, ColData),
  183	append(ColData, [stringsAsFactors = 'FALSE'], ColDataOpts),
  184	compound_name_arguments(Term, 'data.frame', ColDataOpts),
  185	DataFrame <- Term.
  186
  187col_data(I, NCols, Rows, [ColI|ColR]) :-
  188	I =< NCols, !,
  189	maplist(arg(I), Rows, ColI),
  190	I2 is I + 1,
  191	col_data(I2, NCols, Rows, ColR).
  192col_data(_, _, _, []).
 r_data_frame_colnames(+DataFrame, -ColNames:list(atom)) is det
ColNames are the column names for DataFrame as a list of atoms.
  198r_data_frame_colnames(DataFrame, ColNames) :-
  199	ColNameStrings <- colnames(DataFrame),
  200	maplist(atom_string, ColNames, ColNameStrings).
 r_data_frame_rownames(+DataFrame, -RowNames:list(atom)) is det
RowNames are the row names for DataFrame as a list of atoms.
  206r_data_frame_rownames(DataFrame, RowNames) :-
  207	RowNameStrings <- rownames(DataFrame),
  208	maplist(atom_string, RowNames, RowNameStrings)