? users online
  • Logout
    • Open hangout
    • Open chat for current file
<div class="notebook">

<div class="nb-cell html" name="htm4">
<h2>Playing with WordNet</h2>

<p> 
As described in its <a href="https://en.wikipedia.org/wiki/WordNet">Wikipedia</a>
article, <b>WordNet</b> is a lexical database for the English language. It groups
English <i>words</i> into sets of <i>synonyms</i> called <i>synsets</i>, provides
short definitions and usage examples, and records a number of relations among
these synonym sets or their members. WordNet can thus be seen as a combination of
dictionary and thesaurus. While it is accessible to human users via a web browser,
its primary use is in automatic text analysis and artificial intelligence
applications. 
</p>
<p>
  Serious stuff, that is, but here we shall only play around with it a bit and write
  a program that generates random haiku poetry. 
</p>
</div>

<div class="nb-cell html" name="htm2">
<h3>Haiku poetry</h3>

<p>
    Haiku is a Japanese form of poetry which in its classical form 
    consists of seventeen syllables. In English haiku poems, 
    these are distributed over three lines:
</p>

<ul>
    <li>Five syllables</li>
    <li>Seven syllables</li>
    <li>Five syllables</li>
</ul>

<p>
    Syntactically, they may for example look as follows:
</p>

<ul>
    <li>Preposition+Determiner+Adjective+Noun</li>
    <li>Determiner+Adjective+Noun+Particle+Verb</li>
    <li>Modifier+Adverb</li>
</ul>

<p>
    The loaded version of WordNet used contains 212558 wordforms, 
    so the possibilities are endless. Most of the generated haikus 
    are bad, but who knows, perhaps some really beautiful ones will
    emerge in the process. (They are in there...)
</p>
</div>

<div class="nb-cell html" name="htm3">
<h3>Generating haikus</h3>

<p>
  The implementation needs to non-deterministically generate 
  random words of particular parts of speech and calculate their 
  number of syllables. It must also make sure that each line 
  contains the correct number, and backtrack if not.
</p>
</div>

<div class="nb-cell program" data-background="true" name="p1">
/* Generating haiku poetry */

% Load wordnet interface.
% See http://www.swi-prolog.org/pack/file_details/wordnet/prolog/wn.pl

:- use_module(library(wn)).


print_haiku :-
    haiku_lines(Lines),
    format("~w~n~w~n~w~n", Lines).

haiku_lines([Line1, Line2, Line3]) :- 
    line1(Line1),
    line2(Line2),
    line3(Line3).

% preposition determiner adjective noun

line1(Line) :-
    random_word_syll(preposition, W1, N1),
    random_word_syll(determiner, W2, N2),
    N1 + N2 =&lt; 3,
    random_word_syll(adjective, W3, N3), 
    N1 + N2 + N3 =&lt; 4,
    random_word_syll(noun, W4, N4),
    N1 + N2 + N3 + N4 =:= 5,
    atomic_list_concat([W1, W2, W3, W4], ' ', Line), 
    !. 

% determiner adjective noun particle verb

line2(Line) :-
    random_word_syll(determiner, W1, N1),
    random_word_syll(adjective, W2, N2), 
    N1 + N2 =&lt; 4,
    random_word_syll(noun, W3, N3),
    N1 + N2 + N3 =&lt; 5,
    random_word_syll(particle, W4, N4),
    N1 + N2 + N3 + N4 =&lt; 6,
    random_word_syll(verb, W5, N5),
    N1 + N2 + N3 + N4 + N5 =:= 7,
    atomic_list_concat([W1, W2, W3, W4, W5], ' ', Line), 
    !.
    
% modifier adverb

line3(Line) :-
    random_word_syll(modifier, W1, N1),
    random_word_syll(adverb, W2, N2), 
    N1 + N2  =:= 5,
    atomic_list_concat([W1, W2], ' ', Line), 
    !.

%!  random_word_syll(+PoS, -Word, -N) is nondet.
%
%	Given a part of speech, generate a random word and
%	its number of syllables.

random_word_syll(PoS, Word, N) :-
    random_word(PoS, Word),
    count_syllables(Word, N).

%!  random_word(+PoS, Word) is nondet.
%
%	Given a part of speech, generate a random word.

random_word(PoS, Word) :-
    findall(W, call(PoS, W), List0),
    random_permutation(List0, List),
    member(Word, List).  

%	Predicates for the parts of speech. The open word
%	classes are fetched from WordNet, the closed ones
%	(or some of them) are just enumerated. Note that
%	the verbs are converted to their third person 
%	singular forms.

noun(Word) :-
    wn_s(_, _, Word, n, _, _).

adjective(Word) :-
    wn_s(_, _, Word, a, _, _).

verb(Word) :-
    wn_s(_, _, Word0, v, _, _),
    make_sg3_form(Word0, Word).

adverb(Word) :-
    wn_s(_, _, Word, r, _, _).

preposition(in).
preposition(on).
preposition(to).
preposition(from).
preposition(around).
preposition(besides).
preposition(along).
preposition(aboard).
preposition(above).
preposition(among).
preposition(behind).
preposition(inside).
preposition(outside).
preposition(under).
preposition(without).
preposition(within).

determiner(a).
determiner(the).
determiner(any).
determiner(your).
determiner(each).
determiner(her).
determiner(his).
determiner(my).
determiner(one).
determiner(our).
determiner(their).
determiner(some).
determiner(this).

particle(still).

modifier(extremely).
modifier(heavily).
modifier(awfully).
modifier(seemingly).
modifier(dreadfully).
modifier(alarmingly).
modifier(exceedingly).
modifier(intensely).
modifier(distinctly).
modifier(profoundly).
modifier(tediously).
modifier(very).
modifier(outstandingly).
modifier(unusually).
modifier(decidedly).
modifier(supremely).
modifier(highly).
modifier(remarkably).
modifier(truly).
modifier(seriously).
modifier(frightfully).
modifier(apparently).
modifier(evidently).
modifier(superficially).
modifier(supposedly).

%!  make_sg3_form(+Word, -NewWord) is det.
%   
% Create a third person singular word form.
    
% If the verb ends in y, remove it and add ies.
make_sg3_form(Word, SG3) :-
    atom_concat(Prefix, y, Word), 
    atom_concat(_, C, Prefix),
    consonant(C),
    !,
    atom_concat(Prefix, ies, SG3).
% If the verb ends in o, ch, s, sh, x or z, add es.
make_sg3_form(Word, SG3) :-
    member(Suffix, [o, ch, s, sh, x, z]),
    atom_concat(_Prefix, Suffix, Word), 
    !,
    atom_concat(Word, es, SG3).
% By default just add s.
make_sg3_form(Word, SG3) :-
    atom_concat(Word, s, SG3).

%!  count_syllables(+Word, -N) is det.
%   
% 	Count the number of syllables in a word
%   form. This is in fact a hard problem so
% 	here there is room for impreovements.

count_syllables(Word, N) :-
    atom_chars(Word, Chars),
    count_syllables_chars(Chars, N).
    
count_syllables_chars([], 0) :- !.
count_syllables_chars([C,l,e], 1) :-
    consonant(C), !.
count_syllables_chars([C,e], 0) :- 
    consonant(C), !.
count_syllables_chars([C|Cs], N) :- 
    consonant(C), !,
    count_syllables_chars(Cs, N).
count_syllables_chars([_, C|Cs], N) :- 
    vowel(C), !,
    count_syllables_chars(Cs, NN), 
    N is NN + 1.
count_syllables_chars([_|Cs], N) :- 
    count_syllables_chars(Cs, NN), 
    N is NN + 1.


vowel(a).
vowel(e).
vowel(i).
vowel(o).
vowel(u).
vowel(y).

consonant(b).
consonant(c).
consonant(d).
consonant(f).
consonant(g).
consonant(h).
consonant(j).
consonant(k).
consonant(l).
consonant(m).
consonant(n).
consonant(p).
consonant(q).
consonant(r).
consonant(s).
consonant(t).
consonant(v).
consonant(x).
consonant(z).
</div>

<div class="nb-cell html" name="htm5">
<p>
  To test it, run the following query:
</p>
</div>

<div class="nb-cell query" name="q1">
print_haiku.
</div>

<div class="nb-cell html" name="htm1">
<style type="text/css" media="screen">
	ul {
        margin: 10px 0 10px 15px;
        padding: 0;
        list-style: none;
	}
	.mytable {
        margin: 20px 20px 2px 15px;
	}
   .bodhidharma {
       cursor: pointer;
   }
   .haiku {
        font-family: "Lucida Grande", "Century Gothic", "Trebuchet MS";
        text-shadow: 4px 4px 12px gray;
        font-size: 20px;
        height: 15px;
        margin: 15px 10px 10px 50px;
    }
</style>


<h3>Meet the crazy haiku poet!</h3>

<p>
    Tickle him with your mouse pointer and he will produce a haiku poem. Make sure your sound isn't muted, and he will even speak!
</p>

<table cellspacing="5" cellpadding="5" border="0">
  <tbody><tr>
    <td>
<img class="bodhidharma" src="">
    </td>
    <td>
        <div>
            <div class="haiku" id="line1"></div>
            <div class="haiku" id="line2"></div>
            <div class="haiku" id="line3"></div>
        



</div>




    </td>
  </tr>
</tbody></table>

<hr>

<script>
  notebook.$(".bodhidharma").on("mouseover", function() {
    notebook.swish({ ask: "haiku_lines([Line1,Line2,Line3])",
                     ondata: function(data) {
                        var haiku = data.Line1+", "+data.Line2+". "+data.Line3;
						var utterance = new SpeechSynthesisUtterance(haiku);
                        utterance.lang = 'en-US';
        				speechSynthesis.speak(utterance);
                        $('#line1').text(data.Line1.charAt(0).toUpperCase() + data.Line1.substring(1));
                        $('#line2').text(data.Line2);
                        $('#line3').text(data.Line3.charAt(0).toUpperCase() + data.Line3.substring(1));
                    }
                   });  
  });
</script>
</div>
</div>